Code: CS3T1

II B. Tech - I Semester - Regular Examinations - December 2015

DISCRETE MATHEMATICS (COMPUTER SCIENCE AND ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer all the questions. All questions carry equal marks

11x 2 = 22 M

1. a) Using the statements: R: John is Healthy

H: John is clever

Write the following statements in symbolic form

- i) If John is healthy then he is not clever
- ii) John is not healthy but clever.
- b) Construct the truth table for $\neg (\neg P \land \neg Q)$.
- c) Show that $(x)(H(x) \rightarrow M(x)) \land H(s) \Rightarrow M(s)$.
- d) Prove that in a lattice (L, \le) , $a \le b$ if and only if $a \land b = a$.
- e) Give an example of a lattice which is distributive but not complemented.
- f) If the universe of discourse is $\{a,b,c\}$ eliminate the quantifier from the formula (x)(P(x)).
- g) Define Isomorphism of two graphs.
- h) State Euler's formula for planar Graphs.
- i) Is there a graph with degree sequence (1, 3, 3, 3, 5, 6, 6)? Give reasons.

- j) Show that any nontrivial tree contains at least two vertices of degree 1.
- k) Describe the problem of Konigsberg Seven bridges and draw its graph.

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

2. a) Show that

$$((P \lor Q) \land \neg (\neg P \land (\neg Q \lor \neg R))) \lor (\neg P \land \neg Q) \lor (\neg P \land \neg R)$$
 is a tautology. 8 M

b) Prove that

$$\neg (p \rightleftarrows q) \Longleftrightarrow (p \lor q) \land \neg (p \land q)$$

- 3. a) Show that $(\forall x)(p(x)\lor q(x))\Rightarrow (\forall x)p(x)\lor (\exists x) q(x)$. 8 M
 - b) Show that $r \land (p \lor q)$ is a valid conclusion from the premises $p \lor q$, $q \to r$, $p \to m$ and $\neg m$.
- 4. a) Show that in a lattice $\langle L, \leq \rangle$ if $a \leq b \leq c$ then $i)(a \vee b) = (b \wedge c).$
 - ii) $(a \wedge b) \vee (b \wedge c) = b = (a \vee b) \wedge (a \vee c)$
 - b) i) Prove that every chain is a distributive lattice

ii) Show that every interval of a lattice is sub lattice

8 M

5. a) Are the following pair of graphs isomorphic. Justify your answer. 8 M

- b) Prove that every tree with n vertices has exactly $\binom{n-1}{8}$ edges.
- 6. a) Prove that a complete graph K_n is planar iff $n \le 4$. 8 M
 - b) In a connected simple planar graph show that $|E| \le 3|V|$ -6 8 M